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Abstract. We study the screening properties of three- and two-dimensional charged Bose
condensates including many-body effects via a local-field correction. The screened test-charge—
test-charge interaction, the test-charge—boson interaction and the boson—boson interaction for
equally chargedparticles are calculated and found toditractiveat intermediate distances due

to overscreening effects. Using the variational method and the matrix diagonalization method we
determine the energies and wave functions of the ground state and excited states as functions of
the Bose condensate density. For densities larger than a critical density no bound states are found.
Below the critical density the number and the energy of bound states relative to the continuum
increase and then saturate with decreasing Bose condensate density.

1. Introduction

Screening effects are essential in interacting quantum liquids. The screening properties of
fermion systems have been discussed extensively in the literature and are described in many
text books. The screening properties of Bose condensates are less known and only a few papers
have considered such effects. In the following we discuss some consequences of screening
provided by a charged Bose condensate especially the effect of screereqgaltycharged
particles.

Recently, it has been shown that two equally charged test-particles imbedded in an electron
gas with alow enough density can have bound states when the screening supplied by the medium
is taken into account. This was shown for interacting electron systems in one [1], two [2, 3]
and three [3, 4] dimensions. One might believe that the presence of Friedel oscillations [5] in
electron systems is the origin of this attraction. In the present paper we show that attraction
between equally charged particles also occurs when the test-particles are screened by a Bose
condensate. Already within the random-phase approximation (RPA) it can be shown that the
screened potential within a Fermi or Bose gas has an attractive part at any density, but bound
states only exist inow density systems. The attractive part in the screened potential is an
overscreening effect, which is a strong effect when the screening is due to a Bose condensate.

A necessary but not sufficient condition for supraconductivity is the attraction between
equally charged particles. This attraction can be cale@rscreeningand is in general a
retarded interaction [6]. The present model of overscreening effects in a Bose condensate
shows that attraction for a non-retarded interaction due to overscreening can occur.
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We have a few reasons to motivate our study of a Bose condensate. (i) A three-
dimensional charged Bose condensate is expected to be an important model system for
astrophysical applications [7] and it is interesting to study the screening properties of such
a condensate. (ii) A two-dimensional Bose condensate can be considered as a model for high-
T, superconductors. In higfi- superconductors paired electrons are tightly bound together
and a Bose condensate of such pairs might be a simple model to describe some properties of
these systems [8, 9]. (iii) The recent discovery of Bose condensation of neutral sodium atoms
and the study of elementary excitations [10] will certainly lead to more interest in properties
of boson systems. (iv) Finally, a Bose condensate is an elementary but non-trivial system in
statistical mechanics and the attraction between equally charged particles, due to screening by
a Bose condensate, is certainly of interest from a theoretical point of view.

The existence of an attractive part in the interaction potential between equally charged
particles in the case of screening by a Bose condensate is well known in three dimensions
(3D) [11] and two dimensions (2D) [12]. However, bound state energies have never been
calculated. We show that many-body effects, described by the local-field correction, increase
the attraction as compared with that of the RPA.

Many-body effects have been discussed in recent years for the 3D charged Bose condensate
[13-18] and for the 2D charged Bose condensate [18—20]. The many-body effects are described
by a functionG(¢), called the local-field correction (LFC). For a review, see [21]. The LFC
is essential in order to describe the interaction potential in the low density domain [22], in
contrast to the high density limit where the RPA is exact and the LFC can be neglected.

In section 2 we describe the model and the theory. Our results for bound states between
equally charged patrticles induced by screening effects due to the Bose condensate in 3D are
described in section 3. The results for a 2D Bose condensate are given in section 4. The
screened boson-boson interaction is discussed in section 5. A discussion of our results is
given in section 6. The conclusion is found in section 7.

2. Model and theory

2.1. Model: the screened Coulomb interaction

As the model we use @-dimensional Bose gad (= 3, 2) with a parabolic dispersion and
density N,. Distances are given in units of the effective Bohr raditis= ¢; /m*e? with

the Planck constart/27r = 1. Wave numbers are given in units of the inverse Bohr radius.
m* is the effective mass arg, is the dielectric constant of the background. Energy values
are expressed in units of the effective Rydberg Rym*e*/2¢2. The density parameter (or
Wigner—Seitz parameter)is given byr, = [3/4n N3a*3)/3for 3D and by, = [1/7 Noa*?]Y/?

for 2D.

The model we consider is a jellium model for a Bose condensate: if the Bose condensate
is negatively charged there is a positive background charge to ensure charge neutrality. The
interaction potential between the bosons is denoted gy in the Fourier space. The bare (b)
Coulomb interaction potential between two equally charged patrticles is repulsive and given by
Viy(q) = +V(q) with V(¢q) = 4me? /e q? in 3D andV (¢) = 2we?/e.q in 2D. Here and in the
following, a Bose patrticle is assumed to hold a single elementary charge. However, our results
can be rescaled according to the effective charge and mass of bosons under consideration.

The screened test-charge—test-charge (it) interadfion(q) is given in terms of the
screening functiom,, (¢) by

Vi(q)

. 1
&1(q) @)

Vtt,sc (61) =
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We assume the twest-chargeso be distinct from the boson medium providing the screening.
The dielectric functiore,, (¢) is given by Ve, (q) = [1 — V(g)G(q) Xo(g)]/[1 + V(g)[1 —
G(9)]1Xo(g)] andG(q) is the LFC function.Xo(q) = 4N,m*/q? is the static density—density
response function of the free Bose condensate [11, 12, 14]. In fact, the formiefpigl as
given above was derived for electron screening [22], but the same reasoning holds for Bose
condensate screening. However, as will be seen below, the screening properties of charged
Bose and electron systems differ in many respects due to different response fulgiigns

In the following G2(¢) andG3(g) denote the LFC functions in 2D and 3D, respectively.
For 3D the dielectric function for the test-charge—test-charge interaction is given by

1 _ 1
eu(q) 1-Gslg) +q*/43
with gza* = 12Y4/r3*. 1/45 is the relevant length scale for screening in the 3D Bose

condensate and goes to infinity figr— oo, which corresponds to the unscreened limit. The
dielectric function in 2D is expressed as

(24)

1 1
=1- ; (20)
e (q) 1-Gaq) +q3/q5
with goa* = 2/rf/3. Here 1/g, is the relevant length scale for screening.
The screened test-charge—boson (tb) interadtipr. (¢) is written as
Vi(q)
th,sc(‘]) = b—q (3)
en(q)

where the inverse dielectric function for tb interaction i&,1(qg) = 1/[1 + V(g)[1 —
G(9)]1Xo(¢)][22]. This leads in 3D to

1 1-G
=1- S(q) ) (43.)
e (q) 1-Ga(g) +q9*/q3
and in 2D to
1 1-G
e (q) 1-Gaq) +q3/q5
For G(¢) = 0 one obtains the familiar RPA expression:
erpa(q) = 1+V(q)Xo(q) ()

with Vepa(q) = Vi(q)/erpa(q). Forry <« 1 the LFC can be neglected and one obtains
en(q) = £(q) =~ erpalq). However, forr, > 1 one must carefully discriminate which kind
of interaction one wants to study,,(¢) takes a different form frona,, (¢) to account for the
indistinguishability of bosons.

In our calculation we use for the LFC the sum-rule approximation [18] of the
Singwi—Tosi—Land—Sjlander (STLS) approach. For a review on the STLS approach, see
[23]. The LFC is parametrized by three coefficiefts(r,) (i = 1, 2, 3). For the 3D Bose
condensate the LFC function is written as

0.84652
Galg) = ¥/ ——— s (62)
2.18875C13(rs) + q°Ca3(rs) — q3q C33(rs)
and for the 2D Bose condensate as
1.40
Galq) =r{® % (60)

* [2.64492C12(r)2 + q2Ca2(ry)2 — q2q Caa(rs)]Y2
The coefficients are determined in the same way as for electrons@24(x,) is determined
from the compressibility of the condensate calculated within the STLS approach. Inthe STLS
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description, the pair correlation functigr{r = 0) is connected with the LFC function for
large wave numbers vi&(g — oo) = 1 — g(r = 0): this definesCy,(ry). The coefficient
C3,4(ry) is calculated using the relation between the pair-correlation fungtioa= 0) and the
static structure facto§(g). Therefore the LFC fulfils the compressibility sum rule. Details
will be published elsewhere [25].

2.2. Bound states

The Schédinger equation for the screened potential is solved numerically in the momentum
space. This equation reads
2

Zzn*lﬂ(q) + (Zi)d / d'q'Vie(q — @)V (q) = EY (q). (7
Equation (7) has been discretized accordingy tand ¢’ to give a matrix equation.V;. in
equation (7) represent&pa, Vipsc OF Vi 5c. The eigenenergy and eigenfunction problem is
then solved numerically by a standard method for matrix diagonalization. Details can be found
in [4].

For 3D the wave functiony(r) is given by, (r)Y.. (¢, 8). The degeneracy of the
eigenstates ig; = 2/ + 1. ¢,,,(r) is the solution of the radial Schdinger equation for the
effective potentiaV, s (r) = Vi(r) + Vi (r) with V;(r) = I(I + 1)/2m*r2.

For 2D the wave function is given by (r) = ¢,,,(r) exp[til¢] with degeneracy, = 1
for/ = 0andg, = 2 forl > 0. ¢,,,(r) is the radial wave function for the effective potential
Verr (r) = Vi(r) + Vie(r) with Vi(r) = 1?/2m*r?. In the momentum space the wave function
is written asy (q) = ¢,,1(q) exp(£ilp). In the following¢ (r) is used instead ap,,,;(r).

Using a trial wave functionp,,,(r) the variational (var) energy is given b¥y,,, =
(T) + (V) + (Vi). The averageO) means(0) = [;° drr = ¢, (r) Odya (r). For certain
simple wave functions theintegrals forO = T, V, andV,. can be calculated analytically. The
shape of the effective potential leads us to choose a variational radial wave function containing
a Gaussian factor:

buar (r) = Ar'/2 exp(—r?/20%) (8)
with the normalization constamt and the variational parameteks and«. The explicit
expressions fo(T), (V;) and(V,.), depending on the screening function, can be found in our
earlier work on electron screening [2—4].

The variational wave functios,,, (r) shows a maximum at* = (k1/2)Y?«. Fork; > 0
the wave function has a noderat= 0 and corresponds tg. = 1. For different values of
the notation of the state./ is 1s, 1p and 1d fafF = 0, 1, 2, respectively. The bound states are
very extended in space due to the large Coulomb repulsion at small distances.

In the following we present results for bound states within the RPA and the tb and the
tt interaction. In general we only find bound statesAfor- 1 (orr; > 1), where the RPA
is no longer applicable. The results within the RPA are given for comparison with the results
obtained for the tb and the tt interaction: the importance of many-body effects described by
the LFC is thus demonstrated.

3. Results for three dimensions

3.1. The screened potential

In the real space the screened Coulomb interaction in 3D is given by

1 o0 .
Vsc(r) = m /O dq q S'”(qr)ch(4)~ (9)
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Within the RPAV,.(r) can be calculated analytically:

Vepa(r)/RY* = 2‘1—* exp(—rqs/2"?) cosrgs/2"%). (10)
This potential has a minimum at

Fmin/a* = 1.650-3/4 (11a)
with an attractive part

Vrpa(rmin)/RY* = —0.0781/r¥/*. (11b)
Vepamin)rmin = —0.1288 Ry a* is independent of,. We also note thatzp, is zero

for ri/a* = 1.19&3/4 andry/a* = 3.581rs3/4 with r1 < ruin < ro. This shows that
already within the RPA an attractive region (< r < rp) in the screened potential exists
and|Vgpa(rmin)| o< 1/ rf‘/ % increaseswith decreasing. The attractive part in the screened
potential is an overscreening effect. At this point it is obvious to ask whether are there bound
states. However, to our knowledge, this question was never asked in the literature.

A representative example fof,.(r) versusr is shown in figure 1. For, = 1 we find a
minimum V,; s (rin) = —0.108 Ry atr,,;, = 1.55a*. Note the strong Coulomb repulsion
for small distances. Fot, = 1 the differences betwe&rkpa(r), Vip s (r) andVy, . (r) are
already visible.

01

Vsclr)/Ry*
o
T

-0.1+

Figure 1. Screened potentidl. (r) versus distancefor r;, = 1in 3D for equally charged particles.
The solid (dashed—dotted) line represents the test-charge—test-charge (tt) (test-charge—boson (tb))
interaction. The dashed line represents the RPA.

A systematic study of,,;, andV;.(r,.;n) versus for the RPA, and with the LFC for the
tb and tt interactions is shown in figure 2. For largave note that the attractive part for the
tt interaction is strongly increased. Rar> 3 we findV;; 5. (rmin) =~ —0.07 Ry*. Of course,
the results shown in figure 2 present limits for the bound state energies. While the difference
between the RPA and the th interaction seems to be small, we will see that the respective bound
state energies are quite different.

3.2. Bound states

In the RPA our results for the binding energy versusire shown in figure 3. The binding
energies are of the order oIMRY*. From the matrix diagonalization calculation we conclude:
forr, < ry. = 23 N0 bound state exists and in the range23 < 80 we found a single bound
state. Our variational model gives a slightly smaller binding energy than the exact matrix
diagonalization method. The state 1p is threefold degenerate. The binding energies within the
RPA are quite small and the ground state is very extended 40 a*).
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Figure 2. ry;, and V. (rmin) versusrs for 3D and equally charged particles. The solid (dashed)
lines represent the test-charge—test-charge (tt) (test-charge—boson (tb)) interaction. The dotted lines
represent the RPA according to equation (11). The dashed—dotted lines represent the boson-boson

(bb) interaction.
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Figure 3. Binding energy for equally charged particles and variational parameterdk; versus
forn, = 1and = 0, 1in 3D within the RPA. The solid dots are obtained by matrix diagonalization.

Let us discuss some numbers for= 100. The attractive part of the screened potential
is already small:Vgpa (rmin) = —2.5 mRy". We note that the 1s state has a binding energy
of —0.5 mRy*. For the maximum of the wave function we obtaih = 57.1 ¢* while the
minimum of the screened potential is located,g; = 52.2 a*.
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bound state energy (mRy*)

~

o/a*

Figure 4. Binding energy for equally charged particles and variational parametemsgk; versus
ry forn, = 1 and/ = 0,1 in 3D for the test-charge-boson (tb) interaction. The solid dots are
obtained by matrix diagonalization.
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Figure 5. Binding energy for equally charged particles and variational parametamsgk; versus
ry forn, = 1 andl = 0, 1, 2 in 3D for the test-charge—test-charge (tt) interaction. The solid dots
are obtained by matrix diagonalization.

For the tb interaction the results for the binding energy versase shown in figure 4.
The binding energies are of the order d InRy*, a factor of three larger than within the RPA.
Forr; < r,. = 13 no bound state exists and the ground state is less extende@Q «*) than
within the RPA.
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For the tt interaction the results for the binding energy verswse shown in figure 5.
The binding energies are of the order of 40 rfiRyfactor of 100 larger than within the RPA.
Forry < ry. = 6.5 n0 bound state exists and the ground state is much less extende84*)
than within the RPA.

4. Results for two dimensions

4.1. The screened potential

In 2D the screened Coulomb interaction in the real space is given by

1 o0
”M”=zﬁ dg 4Jo(ra) Vse(@). (12)

Jo(x) is the zero-order Bessel function of the first kind.
Within the RPA the screened potential is given by

Vera/RY =% = 2020 [ dy doyran /5% (13

The integral can be calculated analytically and expressed in terms of Bessel and Struve
functions. One can show th&k p 4 (r) has a minimum at

Fmin/a* = 0.956-23 (14a)
with

Vipa(Fmin) JRY* = —0.384/r2/3 (14b)
and Vepa(Fmin)rmin = —0.367 Ry a* is independent of;. Vgp4 vanishes for/a* =
0.586-%% andr,/a* = 3.302-23 with r1 < rin < r». Thus, within the RPA an attractive part

(r1 < r < rp) exists andVgpa (Fipin)| 1/rs2/3 increasexwith decreasingy.

A representative example fdf,.(r) versusr is shown in figure 6 for, = 1 with a
minimum of V,, ;. (rmin) = —0.69 Ry atr,,;, = 0.83a*. Again, we conclude that many-body
effects described by the LFC are already very importantfes 1.

Fmin @NAVy. (rin) VErsus are shown in figure 7. In 20, ;. (r,:n) for rg = 10 is a factor
of ten larger than in 3D. For, > 2 we findV;, ;.(rmin) ~ —0.6 Ry*. Again we note that for
ry > 1 the differences between the RPA and the tb interaction are small, compared with the
differences between the RPA and the tt interaction.

[}
(=]
U

|

Figure 6. Screened potentiaV,.(r) versus distance for ry = 1 in 2D for equally charged
particles. The solid (dashed) line represents the test-charge—test-charge (tt) (test-charge—boson
(tb)) interaction. The dotted line represents the RPA.
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Figure 7. ryi, and V. (rmin) versusrs for 2D and equally charged particles. The solid (dashed)
lines represent the test-charge—test-charge (tt) (test-charge—boson (tb)) interaction. The dotted lines
represent the RPA according to equation (14). The dashed—dotted lines represent the boson-boson
(bb) interaction.
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Figure 8. Binding energy for equally charged particles and variational parametemsgk; versus
rg for n, = 1 andl = 0,1,2 in 2D within the RPA. The solid dots are obtained by matrix
diagonalization.

4.2. Bound states

Within the RPA our results for the binding energy verguare shown in figure 8. The binding
energies are of the order of 8 mRyFrom the matrix diagonalization calculation we found:
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for ry < r,c = 1 no bound state exists and forlr, < 10 a single bound state is found. Our
variational results give a slightly smaller binding energy than the exact matrix diagonalization.
As in 3D we denote the states by two quantum numbers: the radial quantum runavet
the angular quantum numbkrThe state 1p has a twofold degeneracy.

In 2D the ground state is less extended¥ 10a*) thanin 3D. For; = 20 we obtain within
the RPA the following numbersVzpa(rmin) & —52 mRY, binding energy—10.7 mRyF,
Fmin = 1.04a* andr* = 8.9 a*.

For the tb interaction the results for the binding energy versase shown in figure 9.
The binding energies for the 1s state are of the order of 25 drfactor of three larger than
within the RPA. For, < r,. = 0.7 no bound state exists and the ground state is less extended
(o &~ 6 a*) than within the RPA.

bound state energy(mRy"

a/a*

1s

!
0 S 10 15 2
LS

Figure 9. Binding energy for equally charged particles and variational parametensglk; versus
ry forn, = 1 andl = 0, 1, 2 in 2D for the test-charge—boson (tb) interaction. The solid dots are
obtained by matrix diagonalization.

For the tt interaction the results for the binding energy versase shown in figure 10.
The binding energies are of the order of 300 mRyfactor of 40 larger than within the RPA.
Forr; < ry,. = 0.5 no bound state exists and the ground state is much less extende84*)
than within the RPA.

5. Screened boson—boson interaction

In this section we describe the effective interaction between two bosons screened by a Bose
condensate. The two repulsive charges are now indistinguishable from other bosons which
screen. The screened boson—boson (bb) intera®lipn (¢) is given by

Vi(q)
e (q)

Vib,sc(q) = (15)
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Figure 10. Binding energy for equally charged particles and variational parameterdk; versus
ry forn, = 1andl = 0, 1, 2 in 2D for the test-charge—test-charge (tt) interaction. The solid dots
are obtained by matrix diagonalization.

The inverse dielectric function for the bb interaction is given By,1(¢) = [1 + V(¢)[1 —
GG (@) Xo(@)]/[L+V(g)[1 — G(g)]Xo(g)]- This result is obtained using the arguments
given in [22] for electrons. In an electron system two different LFCs are needed to account
for the spin. In a boson system one LFC describes all many-body effects.

Explicitly we find in 3D

_ 2
1 —1— [1 G3(Q)] . (163)
epp(q) 1-Gs(g) +q9%/4;5
and in 2D
_ 2
1 —1— [1 GZ(Q)] - (16b)
epn(q) 1—-Galg) +4%/q5

Note that Ye,,(g) is similar to Ve, (¢g): replacing one test-charge by one boson introduces
a factor [1— G(g)] in the second term on the r.h.s. of equation (2). The second term on the
r.h.s. of equations (2) and (16) is nothing else than the screening term.

Vib.se(Fmin) @Ndr,,;, Versusr, are shown in figure 2 for three dimensions and in figure 7
for two dimensions. For large we find |Vyp sc(fmin)| < [VRpaAmin)l < [Virse(rmin)| <
[Virse(rmin)|. This means that the binding energy for the boson—boson interaction, if any,
should be much smaller than the RPA binding energy. For 2D an examplg, af(r) is
shown in figure 11 for, = 15.

We have searched for bound state¥gf,.(r). Inthe 3D Bose condensate the bound state
energies are very small, of ordex6L0~® Ry*. They are found for large,, r, > r,. = 50; see
table 1. However, bound states with such a small binding energy at such low density probably
disappear if a more accurate LFC is used.

In the 2D Bose condensate the bound state energies are of ordet05* Ry* for
rs > rge = 3, see table 1. For, = 15 the ground-state wave function in the real space,
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1 1 | ]
B 20 25 30 35
r/a¥

Figure 11. Screened potentidly, s (r) versus distance for r; = 15 in 2D for equally charged
bosons.

Table 1. Critical Wigner—Seitz parametey, for the appearance of the 1s state found by the matrix
diagonalization method for 2D and 3D. The values in curly brackets are our resutts found
with the variational method. Ground state binding energies,fer 3r,. are denoted b¥1, (3r.)

and are given to show the order of magnitude.

d=3 d=2
Tsc E15(3rsc) (MRY") Fsc E1s (3rsc) (MRY*)

boson-boson (bb) 50—} —6x10°3 3.0{215} -0.4
RPA 23{46} -0.4 0.9{4.7} -5
test—boson (tb) 1819} -2 0.7{2.9} -10
test—test (tt) 6.58) —30 0.5{1.5} —100
7 0=/ ! 1 T ]
.
E

i d=2
o
E 0.5 rg=15 —
=
=>

0 | ] | i

0 20 40 60 80 100
r/a*

Figure 12. Wave function of the ground state versus distander r;, = 15 in 2D for equally
charged bosons.

found with the diagonalization method, is shown in figure 12. It is very extended because
|E1s/ Vib.se(rmin)| = 4.4% only. For other,-values this ratio is also very small. Therefore,
the variational method is no longer valid here; see our values fam table 1.

For the bb interaction, the results of the binding energy, obtained by the matrix
diagonalization method, versus are shown in figure 13 for 2D. We conclude that in 2D
overscreening effects are important for the screened boson—boson interaction and they are
strong enough to produce bound states of energyrRy". This could lead to an instability
of the Bose condensate in 2D.

An important practical conclusion of our calculation concerning the bb interaction is the
following. If many-body effects are taken into account, the bb interaction is much more like
the RPA than the tt interaction or the tb interaction. In other words, in order to describe the
bb interaction it is better to use the RPA than to use the tt interaction or the tb interaction.
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Figure 13. Binding energy versus for the boson—boson (bb) interaction in 2D obtained by matrix
diagonalization.

6. Discussion

In connection with highZ, supraconductivity is was argued that the attraction between the
electrons could be mediated by the Coulomb interaction which is assumed to be retarded via
a dynamic process. In previous papers, we have shown that an attraction does occur between
equally charged particles when a static screening is provided by an electron gas [1-4]. The
present results for bound states between equally charged particles, due to static screening
effects of a Bose condensate, extend the effect of overscreening to bosons and show that
attraction between equally charged particles is a quite general phenomenon in charged quantum
many-body systems. We think that these effects of static overscreening have not really been
understood in the community and our calculation using screening by a Bose condensate might
help us to be better prepared for such a kind of ‘strange’ attraction.

Our formulas for the ‘effective’ inverse static dielectric function also hold for the ‘effective’
inverse dynamic dielectric function by replaciig(g) by Xo(q, »).

The analytical results fot,,;, andVg p 4 (r,.;,) Within the RPA are interesting. Forinstance,
it is generally believed that a bound state always exists in 2D if the potential is attractive.
However, this statement is only true for a short-range potential. For screening by a Bose
condensate within the RPA in 2D, no bound state exists for high density, in spite of a large
value of Vg p A (rmin) /RY* = —0.384/r%3 in that case. This shows that a long-range potential
give rise to unexpected results.

The matrix diagonalization method allows to determine the wave function of the ground
state and of the excited states. From the study of the electron gas [2—4] we know that the
variational method is a good approximation to the exact wave function; therefore we do not
show explicit results in the case of screening by a Bose condensate. In the present paper we
only give the variational results for the = 1 states. We have also studied the= 2 excited
states; for the variational wave function, see [4]. But in general the binding energies of these
states are much smaller than the binding energies of the 1s and the 1p states. Therefore, we do
not give results for these states. We mention that the method used in 4] for2 can also
be applied to the system with a Bose condensate screening.

The general features found for the bound states in the case of screening by a Bose
condensate are similar to those obtained for screening by an electron gas [2—4]. By reducing the
dimension from three to two we find an increase of the binding energy by a factor of about 10.

It is evident from these results that overscreening phenomena might be quite important in low
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dimensional systems. Our results fgrand the binding energy of the 1s state are summarized
intable 1. The exact diagonalization method gives values favhich are substantially lower

than the values obtained with the variational approach. This is an important result which shows
that the diagonalization method is necessary for the determinatigp of

The critical valuer,., where the binding energy of the 1s state disappears, is lower in the
Bose condensate than in a system with fermion screening: compare our table 1 with table 1 in
[3]. Our numerical results for the bb interaction indicates, see table 1, that there are no bound
states in 3D, but in 2D bound states might exist. This could give rise to an instability of a Bose
condensate in 2D.

We used in this paper the linear screening approximation. Our approach is similar to the
widely used linear analysis of instability in non-linear problems. Indeed, in our paper we seek
for the instability threshold in a homogenous gas with respect to many-body perturbations. In
this sense, our approach is certainly correct. We believe that for repulsive charges non-linear
screening effects are small because the wave functions are very extended, compared to the
effective Bohr radius, and the binding energies are small, compared to the effective Rydberg.
For attractive charges non-linear screening effettghtbe more important [26].

7. Conclusion

We have studied the screening by a charged Bose gas in 3D and 2D. The screened test-charge—
test-charge, the test-charge—boson and the boson—boson interaction are investigated by using
a screening function where many-body effects are included through the local-field correction.
Bound states are found for the boson—boson interaction, the test-charge—boson and the test-
charge—test-charge interaction in the low density range. The binding energy increases when the
dimension of the system decreases and are strongly enhanced as compared to the corresponding
values found within the RPA.

Our calculations show that thatraction between equally charged particlésduced by
screening due to a charged Bose condensate,agenscreeningffect. This attraction seems
to be a general property of many-particle systems. The overscreening effects become larger
in low dimensional systems.
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