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Abstract. We study the screening properties of three- and two-dimensional charged Bose
condensates including many-body effects via a local-field correction. The screened test-charge–
test-charge interaction, the test-charge–boson interaction and the boson–boson interaction for
equally chargedparticles are calculated and found to beattractiveat intermediate distances due
to overscreening effects. Using the variational method and the matrix diagonalization method we
determine the energies and wave functions of the ground state and excited states as functions of
the Bose condensate density. For densities larger than a critical density no bound states are found.
Below the critical density the number and the energy of bound states relative to the continuum
increase and then saturate with decreasing Bose condensate density.

1. Introduction

Screening effects are essential in interacting quantum liquids. The screening properties of
fermion systems have been discussed extensively in the literature and are described in many
text books. The screening properties of Bose condensates are less known and only a few papers
have considered such effects. In the following we discuss some consequences of screening
provided by a charged Bose condensate especially the effect of screening onequallycharged
particles.

Recently, it has been shown that two equally charged test-particles imbedded in an electron
gas with a low enough density can have bound states when the screening supplied by the medium
is taken into account. This was shown for interacting electron systems in one [1], two [2, 3]
and three [3, 4] dimensions. One might believe that the presence of Friedel oscillations [5] in
electron systems is the origin of this attraction. In the present paper we show that attraction
between equally charged particles also occurs when the test-particles are screened by a Bose
condensate. Already within the random-phase approximation (RPA) it can be shown that the
screened potential within a Fermi or Bose gas has an attractive part at any density, but bound
states only exist inlow density systems. The attractive part in the screened potential is an
overscreening effect, which is a strong effect when the screening is due to a Bose condensate.

A necessary but not sufficient condition for supraconductivity is the attraction between
equally charged particles. This attraction can be calledoverscreeningand is in general a
retarded interaction [6]. The present model of overscreening effects in a Bose condensate
shows that attraction for a non-retarded interaction due to overscreening can occur.
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We have a few reasons to motivate our study of a Bose condensate. (i) A three-
dimensional charged Bose condensate is expected to be an important model system for
astrophysical applications [7] and it is interesting to study the screening properties of such
a condensate. (ii) A two-dimensional Bose condensate can be considered as a model for high-
Tc superconductors. In high-Tc superconductors paired electrons are tightly bound together
and a Bose condensate of such pairs might be a simple model to describe some properties of
these systems [8, 9]. (iii) The recent discovery of Bose condensation of neutral sodium atoms
and the study of elementary excitations [10] will certainly lead to more interest in properties
of boson systems. (iv) Finally, a Bose condensate is an elementary but non-trivial system in
statistical mechanics and the attraction between equally charged particles, due to screening by
a Bose condensate, is certainly of interest from a theoretical point of view.

The existence of an attractive part in the interaction potential between equally charged
particles in the case of screening by a Bose condensate is well known in three dimensions
(3D) [11] and two dimensions (2D) [12]. However, bound state energies have never been
calculated. We show that many-body effects, described by the local-field correction, increase
the attraction as compared with that of the RPA.

Many-body effects have been discussed in recent years for the 3D charged Bose condensate
[13–18] and for the 2D charged Bose condensate [18–20]. The many-body effects are described
by a functionG(q), called the local-field correction (LFC). For a review, see [21]. The LFC
is essential in order to describe the interaction potential in the low density domain [22], in
contrast to the high density limit where the RPA is exact and the LFC can be neglected.

In section 2 we describe the model and the theory. Our results for bound states between
equally charged particles induced by screening effects due to the Bose condensate in 3D are
described in section 3. The results for a 2D Bose condensate are given in section 4. The
screened boson–boson interaction is discussed in section 5. A discussion of our results is
given in section 6. The conclusion is found in section 7.

2. Model and theory

2.1. Model: the screened Coulomb interaction

As the model we use ad-dimensional Bose gas (d = 3, 2) with a parabolic dispersion and
densityNd . Distances are given in units of the effective Bohr radiusa∗ = εL/m

∗e2 with
the Planck constanth/2π = 1. Wave numbers are given in units of the inverse Bohr radius.
m∗ is the effective mass andεL is the dielectric constant of the background. Energy values
are expressed in units of the effective Rydberg Ry∗ = m∗e4/2ε2

L. The density parameter (or
Wigner–Seitz parameter)rs is given byrs = [3/4πN3a

∗3]1/3 for 3D and byrs = [1/πN2a
∗2]1/2

for 2D.
The model we consider is a jellium model for a Bose condensate: if the Bose condensate

is negatively charged there is a positive background charge to ensure charge neutrality. The
interaction potential between the bosons is denoted byV (q) in the Fourier space. The bare (b)
Coulomb interaction potential between two equally charged particles is repulsive and given by
Vb(q) = +V (q)with V (q) = 4πe2/εLq

2 in 3D andV (q) = 2πe2/εLq in 2D. Here and in the
following, a Bose particle is assumed to hold a single elementary charge. However, our results
can be rescaled according to the effective charge and mass of bosons under consideration.

The screened test-charge–test-charge (tt) interactionVtt,sc(q) is given in terms of the
screening functionεtt (q) by

Vtt,sc(q) = Vb(q)

εtt (q)
. (1)
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We assume the twotest-chargesto be distinct from the boson medium providing the screening.
The dielectric functionεtt (q) is given by 1/εtt (q) = [1 − V (q)G(q)X0(q)]/[1 + V (q)[1 −
G(q)]X0(q)] andG(q) is the LFC function.X0(q) = 4Ndm∗/q2 is the static density–density
response function of the free Bose condensate [11, 12, 14]. In fact, the form for 1/εtt (q) as
given above was derived for electron screening [22], but the same reasoning holds for Bose
condensate screening. However, as will be seen below, the screening properties of charged
Bose and electron systems differ in many respects due to different response functionsX0(q).

In the followingG2(q) andG3(q) denote the LFC functions in 2D and 3D, respectively.
For 3D the dielectric function for the test-charge–test-charge interaction is given by

1

εtt (q)
= 1− 1

1−G3(q) + q4/q4
3

(2a)

with q3a
∗ = 121/4/r

3/4
s . 1/q3 is the relevant length scale for screening in the 3D Bose

condensate and goes to infinity forrs →∞, which corresponds to the unscreened limit. The
dielectric function in 2D is expressed as

1

εtt (q)
= 1− 1

1−G2(q) + q3/q3
2

(2b)

with q2a
∗ = 2/r2/3

s . Here 1/q2 is the relevant length scale for screening.
The screened test-charge–boson (tb) interactionVtb,sc(q) is written as

Vtb,sc(q) = Vb(q)

εtb(q)
(3)

where the inverse dielectric function for tb interaction is 1/εtb(q) = 1/[1 + V (q)[1 −
G(q)]X0(q)] [22]. This leads in 3D to

1

εtb(q)
= 1− 1−G3(q)

1−G3(q) + q4/q4
3

(4a)

and in 2D to
1

εtb(q)
= 1− 1−G2(q)

1−G2(q) + q3/q3
2

. (4b)

ForG(q) = 0 one obtains the familiar RPA expression:

εRPA(q) = 1 +V (q)X0(q) (5)

with VRPA(q) = Vb(q)/εRPA(q). For rs � 1 the LFC can be neglected and one obtains
εtt (q) ≈ εtb(q) ≈ εRPA(q). However, forrs > 1 one must carefully discriminate which kind
of interaction one wants to study.εtb(q) takes a different form fromεtt (q) to account for the
indistinguishability of bosons.

In our calculation we use for the LFC the sum-rule approximation [18] of the
Singwi–Tosi–Land–Sjölander (STLS) approach. For a review on the STLS approach, see
[23]. The LFC is parametrized by three coefficientsCid(rs) (i = 1, 2, 3). For the 3D Bose
condensate the LFC function is written as

G3(q) = r3/4
s

0.846q2

2.188q2
3C13(rs) + q2C23(rs)− q3qC33(rs)

(6a)

and for the 2D Bose condensate as

G2(q) = r2/3
s

1.402q

[2.644q2
2C12(rs)2 + q2C22(rs)2 − q2qC32(rs)]1/2

. (6b)

The coefficients are determined in the same way as for electrons [24].C1d(rs) is determined
from the compressibility of the condensate calculated within the STLS approach. In the STLS
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description, the pair correlation functiong(r = 0) is connected with the LFC function for
large wave numbers viaG(q → ∞) = 1− g(r = 0): this definesC2d(rs). The coefficient
C3d(rs) is calculated using the relation between the pair-correlation functiong(r = 0) and the
static structure factorS(q). Therefore the LFC fulfils the compressibility sum rule. Details
will be published elsewhere [25].

2.2. Bound states

The Schr̈odinger equation for the screened potential is solved numerically in the momentum
space. This equation reads

q2

2m∗
ψ(q) +

1

(2π)d

∫
ddq′Vsc(q − q′)ψ(q′) = Eψ(q). (7)

Equation (7) has been discretized according toq andq′ to give a matrix equation.Vsc in
equation (7) representsVRPA, Vtb,sc or Vtt,sc. The eigenenergy and eigenfunction problem is
then solved numerically by a standard method for matrix diagonalization. Details can be found
in [4].

For 3D the wave functionψ(r) is given byφnr l(r)Ylm(ϕ, θ). The degeneracy of the
eigenstates isgl = 2l + 1. φnr l(r) is the solution of the radial Schrödinger equation for the
effective potentialVeff (r) = Vl(r) + Vsc(r) with Vl(r) = l(l + 1)/2m∗r2.

For 2D the wave function is given byψ(r) = φnr l(r) exp[± ilϕ] with degeneracygl = 1
for l = 0 andgl = 2 for l > 0. φnr l(r) is the radial wave function for the effective potential
Veff (r) = Vl(r) + Vsc(r) with Vl(r) = l2/2m∗r2. In the momentum space the wave function
is written asψ(q) = φnr l(q) exp(± ilϕ). In the followingφ(r) is used instead ofφnr l(r).

Using a trial wave functionφvar(r) the variational (var) energy is given byEvar =
〈T 〉 + 〈Vl〉 + 〈Vsc〉. The average〈O〉 means〈O〉 = ∫∞0 drrd−1φvar(r)Oφvar(r). For certain
simple wave functions ther-integrals forO = T ,Vl andVsc can be calculated analytically. The
shape of the effective potential leads us to choose a variational radial wave function containing
a Gaussian factor:

φvar(r) = Ark1/2 exp(−r2/2α2) (8)

with the normalization constantA and the variational parametersk1 and α. The explicit
expressions for〈T 〉, 〈Vl〉 and〈Vsc〉, depending on the screening function, can be found in our
earlier work on electron screening [2–4].

The variational wave functionφvar(r) shows a maximum atr∗ = (k1/2)1/2α. Fork1 > 0
the wave function has a node atr = 0 and corresponds tonr = 1. For different values ofl
the notation of the statenr l is 1s, 1p and 1d forl = 0, 1, 2, respectively. The bound states are
very extended in space due to the large Coulomb repulsion at small distances.

In the following we present results for bound states within the RPA and the tb and the
tt interaction. In general we only find bound states forrs > 1 (or rs � 1), where the RPA
is no longer applicable. The results within the RPA are given for comparison with the results
obtained for the tb and the tt interaction: the importance of many-body effects described by
the LFC is thus demonstrated.

3. Results for three dimensions

3.1. The screened potential

In the real space the screened Coulomb interaction in 3D is given by

Vsc(r) = 1

2π2r

∫ ∞
0

dq q sin(qr)Vsc(q). (9)
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Within the RPAVsc(r) can be calculated analytically:

VRPA(r)/Ry∗ = 2
a∗

r
exp(−rq3/2

1/2) cos(rq3/2
1/2). (10)

This potential has a minimum at

rmin/a
∗ = 1.650r3/4

s (11a)

with an attractive part

VRPA(rmin)/Ry∗ = −0.0781/r3/4
s . (11b)

VRPA(rmin)rmin = −0.1288 Ry∗ a∗ is independent ofrs . We also note thatVRPA is zero
for r1/a∗ = 1.193r3/4

s and r2/a∗ = 3.581r3/4
s with r1 < rmin < r2. This shows that

already within the RPA an attractive region (r1 < r < r2) in the screened potential exists
and|VRPA(rmin)| ∝ 1/r3/4

s increaseswith decreasingrs . The attractive part in the screened
potential is an overscreening effect. At this point it is obvious to ask whether are there bound
states. However, to our knowledge, this question was never asked in the literature.

A representative example forVsc(r) versusr is shown in figure 1. Forrs = 1 we find a
minimumVtt,sc(rmin) = −0.108 Ry∗ at rmin = 1.55 a∗. Note the strong Coulomb repulsion
for small distances. Forrs = 1 the differences betweenVRPA(r), Vtb,sc(r) andVtt,sc(r) are
already visible.

Figure 1. Screened potentialVsc(r) versus distancer for rs = 1 in 3D for equally charged particles.
The solid (dashed–dotted) line represents the test-charge–test-charge (tt) (test-charge–boson (tb))
interaction. The dashed line represents the RPA.

A systematic study ofrmin andVsc(rmin) versusrs for the RPA, and with the LFC for the
tb and tt interactions is shown in figure 2. For largers we note that the attractive part for the
tt interaction is strongly increased. Forrs > 3 we findVtt,sc(rmin) ≈ −0.07 Ry∗. Of course,
the results shown in figure 2 present limits for the bound state energies. While the difference
between the RPA and the tb interaction seems to be small, we will see that the respective bound
state energies are quite different.

3.2. Bound states

In the RPA our results for the binding energy versusrs are shown in figure 3. The binding
energies are of the order of 0.4 mRy∗. From the matrix diagonalization calculation we conclude:
for rs < rsc = 23 no bound state exists and in the range 23< rs < 80 we found a single bound
state. Our variational model gives a slightly smaller binding energy than the exact matrix
diagonalization method. The state 1p is threefold degenerate. The binding energies within the
RPA are quite small and the ground state is very extended (α ≈ 40a∗).
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Figure 2. rmin andVsc(rmin) versusrs for 3D and equally charged particles. The solid (dashed)
lines represent the test-charge–test-charge (tt) (test-charge–boson (tb)) interaction. The dotted lines
represent the RPA according to equation (11). The dashed–dotted lines represent the boson–boson
(bb) interaction.

Figure 3. Binding energy for equally charged particles and variational parametersα andk1 versusrs
for nr = 1 andl = 0, 1 in 3D within the RPA. The solid dots are obtained by matrix diagonalization.

Let us discuss some numbers forrs = 100. The attractive part of the screened potential
is already small:VRPA(rmin) = −2.5 mRy∗. We note that the 1s state has a binding energy
of −0.5 mRy∗. For the maximum of the wave function we obtainr∗ = 57.1 a∗ while the
minimum of the screened potential is located atrmin = 52.2 a∗.
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Figure 4. Binding energy for equally charged particles and variational parametersα andk1 versus
rs for nr = 1 andl = 0, 1 in 3D for the test-charge–boson (tb) interaction. The solid dots are
obtained by matrix diagonalization.

Figure 5. Binding energy for equally charged particles and variational parametersα andk1 versus
rs for nr = 1 andl = 0, 1, 2 in 3D for the test-charge–test-charge (tt) interaction. The solid dots
are obtained by matrix diagonalization.

For the tb interaction the results for the binding energy versusrs are shown in figure 4.
The binding energies are of the order of 1.5 mRy∗, a factor of three larger than within the RPA.
Forrs < rsc = 13 no bound state exists and the ground state is less extended (α ≈ 20a∗) than
within the RPA.
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For the tt interaction the results for the binding energy versusrs are shown in figure 5.
The binding energies are of the order of 40 mRy∗, a factor of 100 larger than within the RPA.
Forrs < rsc = 6.5 no bound state exists and the ground state is much less extended (α ≈ 8a∗)
than within the RPA.

4. Results for two dimensions

4.1. The screened potential

In 2D the screened Coulomb interaction in the real space is given by

Vsc(r) = 1

2π

∫ ∞
0

dq qJ0(rq)Vsc(q). (12)

J0(x) is the zero-order Bessel function of the first kind.
Within the RPA the screened potential is given by

VRPA(r)/Ry∗ = a∗

r
− 2q2a

∗
∫ ∞

0
dy J0(yrq2)/(1 +y3). (13)

The integral can be calculated analytically and expressed in terms of Bessel and Struve
functions. One can show thatVRPA(r) has a minimum at

rmin/a
∗ = 0.956r2/3

s (14a)

with

VRPA(rmin)/Ry∗ = −0.384/r2/3
s (14b)

andVRPA(rmin)rmin = −0.367 Ry∗ a∗ is independent ofrs . VRPA vanishes forr1/a∗ =
0.586r2/3

s andr2/a∗ = 3.302r2/3
s with r1 < rmin < r2. Thus, within the RPA an attractive part

(r1 < r < r2) exists and|VRPA(rmin)| ∝ 1/r2/3
s increaseswith decreasingrs .

A representative example forVsc(r) versusr is shown in figure 6 forrs = 1 with a
minimum ofVtt,sc(rmin) = −0.69 Ry∗ atrmin = 0.83a∗. Again, we conclude that many-body
effects described by the LFC are already very important forrs = 1.

rmin andVsc(rmin) versusrs are shown in figure 7. In 2DVtt,sc(rmin) for rs = 10 is a factor
of ten larger than in 3D. Forrs > 2 we findVtt,sc(rmin) ≈ −0.6 Ry∗. Again we note that for
rs > 1 the differences between the RPA and the tb interaction are small, compared with the
differences between the RPA and the tt interaction.

Figure 6. Screened potentialVsc(r) versus distancer for rs = 1 in 2D for equally charged
particles. The solid (dashed) line represents the test-charge–test-charge (tt) (test-charge–boson
(tb)) interaction. The dotted line represents the RPA.
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Figure 7. rmin andVsc(rmin) versusrs for 2D and equally charged particles. The solid (dashed)
lines represent the test-charge–test-charge (tt) (test-charge–boson (tb)) interaction. The dotted lines
represent the RPA according to equation (14). The dashed–dotted lines represent the boson–boson
(bb) interaction.

Figure 8. Binding energy for equally charged particles and variational parametersα andk1 versus
rs for nr = 1 and l = 0, 1, 2 in 2D within the RPA. The solid dots are obtained by matrix
diagonalization.

4.2. Bound states

Within the RPA our results for the binding energy versusrs are shown in figure 8. The binding
energies are of the order of 8 mRy∗. From the matrix diagonalization calculation we found:
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for rs < rsc = 1 no bound state exists and for 1< rs < 10 a single bound state is found. Our
variational results give a slightly smaller binding energy than the exact matrix diagonalization.
As in 3D we denote the states by two quantum numbers: the radial quantum numbernr and
the angular quantum numberl. The state 1p has a twofold degeneracy.

In 2D the ground state is less extended (α ≈ 10a∗) than in 3D. Forrs = 20 we obtain within
the RPA the following numbers:VRPA(rmin) ≈ −52 mRy∗, binding energy−10.7 mRy∗,
rmin = 7.04a∗ andr∗ = 8.9 a∗.

For the tb interaction the results for the binding energy versusrs are shown in figure 9.
The binding energies for the 1s state are of the order of 25 mRy∗, a factor of three larger than
within the RPA. Forrs < rsc = 0.7 no bound state exists and the ground state is less extended
(α ≈ 6 a∗) than within the RPA.

Figure 9. Binding energy for equally charged particles and variational parametersα andk1 versus
rs for nr = 1 andl = 0, 1, 2 in 2D for the test-charge–boson (tb) interaction. The solid dots are
obtained by matrix diagonalization.

For the tt interaction the results for the binding energy versusrs are shown in figure 10.
The binding energies are of the order of 300 mRy∗, a factor of 40 larger than within the RPA.
Forrs < rsc = 0.5 no bound state exists and the ground state is much less extended (α ≈ 3a∗)
than within the RPA.

5. Screened boson–boson interaction

In this section we describe the effective interaction between two bosons screened by a Bose
condensate. The two repulsive charges are now indistinguishable from other bosons which
screen. The screened boson–boson (bb) interactionVbb,sc(q) is given by

Vbb,sc(q) = Vb(q)

εbb(q)
. (15)
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Figure 10. Binding energy for equally charged particles and variational parametersα andk1 versus
rs for nr = 1 andl = 0, 1, 2 in 2D for the test-charge–test-charge (tt) interaction. The solid dots
are obtained by matrix diagonalization.

The inverse dielectric function for the bb interaction is given by 1/εbb(q) = [1 + V (q)[1 −
G(q)]G(q)X0(q)]/[1 + V (q)[1 −G(q)]X0(q)]. This result is obtained using the arguments
given in [22] for electrons. In an electron system two different LFCs are needed to account
for the spin. In a boson system one LFC describes all many-body effects.

Explicitly we find in 3D

1

εbb(q)
= 1− [1−G3(q)]2

1−G3(q) + q4/q4
3

(16a)

and in 2D
1

εbb(q)
= 1− [1−G2(q)]2

1−G2(q) + q3/q3
2

. (16b)

Note that 1/εbb(q) is similar to 1/εtt (q): replacing one test-charge by one boson introduces
a factor [1− G(q)] in the second term on the r.h.s. of equation (2). The second term on the
r.h.s. of equations (2) and (16) is nothing else than the screening term.

Vbb,sc(rmin) andrmin versusrs are shown in figure 2 for three dimensions and in figure 7
for two dimensions. For largers we find |Vbb,sc(rmin)| � |VRPA(rmin)| < |Vbt,sc(rmin)| �
|Vtt,sc(rmin)|. This means that the binding energy for the boson–boson interaction, if any,
should be much smaller than the RPA binding energy. For 2D an example ofVbb,sc(r) is
shown in figure 11 forrs = 15.

We have searched for bound states ofVbb,sc(r). In the 3D Bose condensate the bound state
energies are very small, of order 6×10−6 Ry∗. They are found for largers , rs � rsc = 50; see
table 1. However, bound states with such a small binding energy at such low density probably
disappear if a more accurate LFC is used.

In the 2D Bose condensate the bound state energies are of order 5× 10−4 Ry∗ for
rs � rsc = 3, see table 1. Forrs = 15 the ground-state wave function in the real space,
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Figure 11. Screened potentialVbb,sc(r) versus distancer for rs = 15 in 2D for equally charged
bosons.

Table 1. Critical Wigner–Seitz parameterrsc for the appearance of the 1s state found by the matrix
diagonalization method for 2D and 3D. The values in curly brackets are our results forrsc found
with the variational method. Ground state binding energies forrs ≈ 3rsc are denoted byE1s (3rsc)
and are given to show the order of magnitude.

d = 3 d = 2

rsc E1s (3rsc) (mRy∗) rsc E1s (3rsc) (mRy∗)

boson–boson (bb) 50{—} −6× 10−3 3.0{21.5} −0.4
RPA 23{46} −0.4 0.9{4.7} −5
test–boson (tb) 13{19} −2 0.7{2.9} −10
test–test (tt) 6.5{8} −30 0.5{1.5} −100

Figure 12. Wave function of the ground state versus distancer for rs = 15 in 2D for equally
charged bosons.

found with the diagonalization method, is shown in figure 12. It is very extended because
|E1s/Vbb,sc(rmin)| = 4.4% only. For otherrs-values this ratio is also very small. Therefore,
the variational method is no longer valid here; see our values forrsc in table 1.

For the bb interaction, the results of the binding energy, obtained by the matrix
diagonalization method, versusrs are shown in figure 13 for 2D. We conclude that in 2D
overscreening effects are important for the screened boson–boson interaction and they are
strong enough to produce bound states of energy 0.5 mRy∗. This could lead to an instability
of the Bose condensate in 2D.

An important practical conclusion of our calculation concerning the bb interaction is the
following. If many-body effects are taken into account, the bb interaction is much more like
the RPA than the tt interaction or the tb interaction. In other words, in order to describe the
bb interaction it is better to use the RPA than to use the tt interaction or the tb interaction.
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Figure 13. Binding energy versusrs for the boson–boson (bb) interaction in 2D obtained by matrix
diagonalization.

6. Discussion

In connection with high-Tc supraconductivity is was argued that the attraction between the
electrons could be mediated by the Coulomb interaction which is assumed to be retarded via
a dynamic process. In previous papers, we have shown that an attraction does occur between
equally charged particles when a static screening is provided by an electron gas [1–4]. The
present results for bound states between equally charged particles, due to static screening
effects of a Bose condensate, extend the effect of overscreening to bosons and show that
attraction between equally charged particles is a quite general phenomenon in charged quantum
many-body systems. We think that these effects of static overscreening have not really been
understood in the community and our calculation using screening by a Bose condensate might
help us to be better prepared for such a kind of ‘strange’ attraction.

Our formulas for the ‘effective’ inverse static dielectric function also hold for the ‘effective’
inverse dynamic dielectric function by replacingX0(q) byX0(q, ω).

The analytical results forrmin andVRPA(rmin)within the RPA are interesting. For instance,
it is generally believed that a bound state always exists in 2D if the potential is attractive.
However, this statement is only true for a short-range potential. For screening by a Bose
condensate within the RPA in 2D, no bound state exists for high density, in spite of a large
value ofVRPA(rmin)/Ry∗ = −0.384/r2/3

s in that case. This shows that a long-range potential
give rise to unexpected results.

The matrix diagonalization method allows to determine the wave function of the ground
state and of the excited states. From the study of the electron gas [2–4] we know that the
variational method is a good approximation to the exact wave function; therefore we do not
show explicit results in the case of screening by a Bose condensate. In the present paper we
only give the variational results for thenr = 1 states. We have also studied thenr = 2 excited
states; for the variational wave function, see [4]. But in general the binding energies of these
states are much smaller than the binding energies of the 1s and the 1p states. Therefore, we do
not give results for these states. We mention that the method used in [4] fornr = 2 can also
be applied to the system with a Bose condensate screening.

The general features found for the bound states in the case of screening by a Bose
condensate are similar to those obtained for screening by an electron gas [2–4]. By reducing the
dimension from three to two we find an increase of the binding energy by a factor of about 10.
It is evident from these results that overscreening phenomena might be quite important in low
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dimensional systems. Our results forrsc and the binding energy of the 1s state are summarized
in table 1. The exact diagonalization method gives values forrsc which are substantially lower
than the values obtained with the variational approach. This is an important result which shows
that the diagonalization method is necessary for the determination ofrsc.

The critical valuersc, where the binding energy of the 1s state disappears, is lower in the
Bose condensate than in a system with fermion screening: compare our table 1 with table 1 in
[3]. Our numerical results for the bb interaction indicates, see table 1, that there are no bound
states in 3D, but in 2D bound states might exist. This could give rise to an instability of a Bose
condensate in 2D.

We used in this paper the linear screening approximation. Our approach is similar to the
widely used linear analysis of instability in non-linear problems. Indeed, in our paper we seek
for the instability threshold in a homogenous gas with respect to many-body perturbations. In
this sense, our approach is certainly correct. We believe that for repulsive charges non-linear
screening effects are small because the wave functions are very extended, compared to the
effective Bohr radius, and the binding energies are small, compared to the effective Rydberg.
For attractive charges non-linear screening effectsmightbe more important [26].

7. Conclusion

We have studied the screening by a charged Bose gas in 3D and 2D. The screened test-charge–
test-charge, the test-charge–boson and the boson–boson interaction are investigated by using
a screening function where many-body effects are included through the local-field correction.
Bound states are found for the boson–boson interaction, the test-charge–boson and the test-
charge–test-charge interaction in the low density range. The binding energy increases when the
dimension of the system decreases and are strongly enhanced as compared to the corresponding
values found within the RPA.

Our calculations show that theattraction between equally charged particles, induced by
screening due to a charged Bose condensate, is anoverscreeningeffect. This attraction seems
to be a general property of many-particle systems. The overscreening effects become larger
in low dimensional systems.
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